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A framework is presented for the construction of multidimensional slope limiting
operators for two-dimensional MUSCL-type finite volume schemes on triangular
grids. A major component of this new viewpoint is the definition of multidimensional
“maximum principle regions.” These are defined by local constraints on the linear
reconstruction of the solution which guarantee that an appropriate maximum principle
is satisfied. This facilitates both the construction of new schemes and the improvement
of existing limiters. Itis the latter which constitutes the bulk of this paper. Numerical
results are presented for the scalar advection equation and for a nonlinear system,
the shallow water equations. The extension to systems is carried out using Roe’s
approximate Riemann solver. All the techniques presented are readily generalised to
three dimensions. @ 1999 Academic Press

Key WordsMUSCL; upwind schemes; unstructured grids; slope limiters; conser-
vation laws.

1. INTRODUCTION

In one dimension, upwind finite volume schemes have developed into reliable tools
producing accurate numerical approximations of hyperbolic systems of partial differer
equations. In higher dimensions it has proved difficult to attain the same degree of robus
and accuracy with simple extensions of these one-dimensional techniques, particular
unstructured grids. This is in part because the additional multidimensional nature is
exploited sufficiently. As a consequence, a great deal of research has been carrie
into the generation of genuinely multidimensional, high order schemes which retain
properties of those methods which have had such success in one dimension.

High resolution schemes for conservation laws in one dimension are usually constru
using some form of TVD (total variation diminishing) limiter (cf. [16, 11]) so that higl
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order accuracy can be achieved while avoiding unphysical oscillations in the solution.
commonly used approach is the slope limiting (MUSCL) technique of van Leer [17],
which the limiter is applied in a geometric manner, to the gradients of a piecewise lir
reconstruction of the solution, to create a monotone scheme. In more than one dimel
the generalisation of the TVD condition proves to be prohibitively restrictive on Cartes
meshes because the resulting scheme can be no more than first order accurate [€
difficult to define on arbitrary unstructured meshes. Consequently, Spekreijse [15] prop
a new class of monotone scheme, based on positivity of coefficients, a property whic
simple to define in any number of dimensions. Much subsequent research has been dil
towards multidimensional numerical schemes which satisfy properties of this type, ust
based on ensuring that some form of local maximum principle is satisfied. More recel
there has been a great deal of work on limiting reconstructed solutions on unstructured ¢
see, for example, the work of Perthame and Qiu [13] in which interpolated solution val
are limited solely to avoid unphysical negative solution values (e.g., of density and pres
in the Euler equations), or the local extremum diminishing (LED) schemes of Jame
[10]. More closely related still to the work presented here are the slope limiting procedt
for multidimensional cell-centre finite volume schemes for unstructured triangular mes
proposed by Barth and Jesperson [3], Durlofskwl. [4], Liu [12], and Batteret al. [2].
Each of these schemes involves the construction of an appropriate linear represen
of the solution within a triangular cell which is then limited in a manner which enforc
a positivity constraint on the scheme. This paper proposes a way in which these lim
techniques can be improved by taking more account of the multidimensional nature o
problem.

The general two-dimensional MUSCL-type numerical scheme for the solution of
scalar advection equation is described in Section 2. Some existing techniques for re
structing and limiting the local solution gradients are then discussed briefly, followed
a simple technique for improving the accuracy of many of these limiting procedures.
involves the construction of a “maximum principle region” for each cell, within which
gradient operator must lie in order to satisfy the desired maximum principle. The fral
work described also allows the construction of new schemes, but discussion of these ic
to a minimum since a scheme using these ideas has yet to be devised which consis
improves on the existing methods (some preliminary results for a maximally compres
limiter are presented in [8]). This is an area which warrants further research. A crit
comparison is then made between the results obtained from the schemes described.

Section 3 extends the applications of these methods to a nonlinear system of equa
specifically the shallow water equations. The basic high order scheme is describe
which Roe’s approximate Riemann solver is employed at grid edges, locally decompo
the system into components to which the scalar scheme is applied.

2. THE SCALAR ADVECTION EQUATION
In conservation form the two-dimensional scalar advection equation is written
Ut + fx + gy = 0, (2.1)

where the conservative fluxeé= f(u) and g=g(u) are functions of the solution
variableu.



56 M. E. HUBBARD

A MUSCL-type cell-centre finite volume method for the numerical solution of the sca
advection equation is described as follows. Integrate (2.1) over a control vofursay
(taken here to be a single grid cell) and apply the divergence theorem to the resulting
integral, giving the equation

// utdxdy+f{ f.di =0, (2.2)
Q I

where f = (f, g)" is the flux function andi represents an outward pointing normal to the
boundaryo Q2 of the control volume.
Approximation of the boundary integral in (2.2) leads to the finite volume discretisati

3 (2.3)

in which ug is defined to be the average valuewbver the control volume?, F; is a
numerical flux functionyg, is the area of the control volumsl is the number of edges it
has, andiy is the outward pointing normal to theth edge, scaled by its length. Note that
since the control volumes coincide with the grid cells, the numerical flux fundtjds an
approximation to the flux at a particular grid edge.

Assuming that the approximation tois constant within each cell and discontinuous &
the cell edges in general, as illustrated in Fig. 2.1, a scheme which is first order accure
space and satisfies an appropriate local maximum principle is obtained by introducin
upwind bias into the evaluation of the numerical flux function. Taking as an example
kth edge of cell 0 in Fig. 2.1, the upwinding is applied [7] by defining

) . Wbk ifA-A=0
f*(Uo, U - ik = { L K= (2.4)

A - D otherwise
whereu is the value ofu in the adjacent grid cell and is an appropriate local average
of the advection velocity = (%, g—u)T, evaluated from the solution valuag anduy. Note
that an equivalent expression to (2.4) is given by

|2 - Fik| (Ux — Uo), (2.5)

NIl

> R 1 - > .
f*(Uo, Uk) - Nk = é(fo-i- fi) - N —

FIG. 2.1. The limiting planes as defined for a triangular control volume (left) and a piecewise const
reconstruction of the solution (right).
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FIG. 2.2. A piecewise linear reconstruction of the solution for triangular control volumes.

which is generally preferred because of its symmetry. Although only triangular grid cells
illustrated in Fig. 2.1, the numerical fluxes (2.4) and (2.5) can be used on general polyg
cells, such as quadrilaterals.

2.1. Gradient Operators and Higher Order Schemes

Higher order spatial accuracy is achieved by introducing a higher order reconstruc
of the variableu within each grid cell. For example, a piecewise linear approximation
the solution, such as that shown in Fig. 2.2, which is exact for linear initial data, leads
method which is second order accurate in space.

Thus, given an initial constant (or average) solution valwethin a cell we carry out a
linear reconstruction af within that cell. This is expressed as

u=u+r7-L, (2.6)
wherer is a position vector relative to the centroid of the cell an a gradient operator,
yetto be defined. Itis easy to show that such a reconstruction is conservative in the sens

i//udxdy:ﬁ. 2.7)
Vo J Jo

It can also be shown [2] that when (2.7) holds the resulting numerical scheme (2.3)
satisfy a local maximum principle for an appropriate restriction on the time-step as lon
the reconstruction (2.6) within each cell does not lead to the creation of any new extrer
themidpointsof the edges of that cell. This is less restrictive than the often used constr
[3] that no new extrema be created at the cell vertices.

The numerical flux function of Eq. (2.5) at a cell edge is now written in terms of t
reconstructed solution values in the cells on either side of the edge and evaluated ¢
midpoint, as depicted in Fig. 2.2. Thug:, as substituted into (2.3) is written

fi = f*(Uok, Uko) = F*(Uo + Fox - Lo, Uk + Fio - L), (2.8)

wherer; is the vector from the centroid of célto the midpoint of the edge between célls
andj, andL; is the gradient of the reconstructed solution in celih the notation used here
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Uok IS considered to be aimterior reconstructed solution value relative to the cell unde
consideration andy is the correspondingxteriorvalue, taken from the adjacent cell (see
Fig. 2.2). As in the MUSCL approach, the discontinuity in the reconstruction at the c
edge motivates the use of a Riemann solver to evaluate the fluxes here. It remains to
an appropriate gradient operaifnwith which to create the linear reconstruction of the
solution within each grid cell.

A simple gradient operator, which is exact for linear data, can be defined on any gri
taking the (average) solution value in three arbitrarily chosen, but preferably adjacent,
(i, j, andk say, forming a triangle with anticlockwise indexing of its vertices) and definir

N
n
”) forn, > €
Ny

V(Aijk) = <_E

(8) otherwise

(2.9)

Heree ~ 10~1%is a specified tolerance, ang, ny, andn, are the components of the vector
n normal to the plane, defined by the trianglk in xyu-space, cf. Fig. 2.1, and given by

n= (P — Py x (Pj — Py, (210)
where
Xy
P.=1{v|. (2.11)
U

The vectorn has been constructed in such a way thatalways has the same sign as
the area ofAijk. The second option in (2.9) deals with the possibilityAiffk having

a non-positive area and rejects any such triangle as a basis for reconstruction. Figur
illustrates that this can happen even on relatively uniform grids. Note also that any consi
local approximation to/u may be used in place of (2.9), e.g., the Green—Gauss and lin
least-squares approximations used in [3].

SelectingI: in (2.8) to be thev operator of (2.9) leads to a second order accurate meth
(a linear solution is modelled exactly) but doesn’t prohibit overshoots and undershoo
the midpoints of the cell edges, so the scheme does not satisfy a local maximum princ
In order to impose this the gradient operafomust be defined as a “limited” form of.

2.1.1. Limited gradient operators.The imposition of a local maximum principle, as
used in the work of [12, 4, 2], can be achieved by constraining the gradient operatc

FIG. 2.3. Areconstruction triangle with negative area (shaded).
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FIG. 2.4. A maximum principle region (shaded).

lie within a “maximum principle (MP) region.” The MP region for a given triangle can
represented simply by choosing the cell centroid as the origin and then constructing
region around it defined by the inequalities

Min(Ux — U, 0) < Fox - L < max(ux — U, 0) (2.12)

for k=1, 2, 3 (on triangles), wherég is the vector from the centroid of cell 0 to the
midpoint of the edge between cells 0 dadAn example of such a region is depicted ir
Fig. 2.4. The gradient operatar= (x, y)" is most easily considered as a vector in two
dimensional space; then each pair of inequalities in (2.12) can be depicted by two pal
lines (one solid and one dashed in the figure) perpendicular to the relevant Fgctor
Figure 2.4 illustrates a case wherg u, > Ug andug < Ug. If ux — Ug has the same sign for
eachk then the MP region contains only the centroid of the triangle, as would be expet
since this indicates a local extremum. Hence, any limiting procedure of the type consid
in (2.12) reduces the scheme locally to first order in these cases.

However, the constraints given by (2.12) ensure that the reconstruction has the follo
two properties:

e NoO new solution extrema are created at the midpoints of the cell edges, enfor
the maximum principle.
e Ugk — Ug has the same sign ag — Uo.

Note that this differs from the work of Barth and Jespersen [3] who, in addition, prop
that

e Uy — Ugk has the same sign ag — uo.

This, in combination with the other two properties, generalises the one-dimensional T
constraint on the reconstruction, but it is not necessary for positivity and, asin [4, 12, 2
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not enforced in this work. It is not clear how a MP region could be constructed which wo
ensure the third property, but a simple post-processing step, in which the reconstrt
solution within the offending cells is limited a second time (so that- «*L), would be
enough to attain it.

Existing limited schemes based on (2.9) can be expressed quite simply, in two stage

(a) Construct one or more of the gradient operators
V(A123, V(A023), V(A103), V(A120), (2.13)

(in the notation of (2.9) and Fig. 2.1).
(b) Limit a gradient operator chosen from (2.13).

Importantly, the first of these two steps ensures that the reconstruction of a linear soluti
exact (for higher order accuracy), whichever of the four gradient operators is chosen, an
limiting procedure will not interfere with this. As mentioned earlier, the list given in (2.1.
can be augmented by the Green—Ga@sﬁ;ﬁ and the linear Ieast—square%L(s) gradient
reconstructions suggested in [3], both of which can be treated in the same manner i
second stage. In effect, step (a) defines afinite set of possible directions for the reconstr
gradient, and step (b) chooses one of these directions and bounds the magnitude of the

The limited central difference (LCD) scheme is the simplest and cheapest approac
the type described above. It considers only the opel%@MZS) in step (a), and then limits
this by setting

maXtk—00 if Fy. - [ > max(ux — Uo, 0)
Ok -
k ; _ P g .
o = 7”"”(;” E“O’O) if Fok - L < min(ug — Uo, 0) (2.14)
Ok *
1 otherwise

for each edgé, from which the LCD gradient operator is calculated using

Cicp = aV(A123) = (kinligsak)ﬁ(mzs). (2.15)

The action of this limiter is illustrated in Fig. 2.5. The initial 0peraﬁ1ﬂ123’) might place
the tip of the vectol. = (x, y)" at any one of the four points indicated by asterisks in th
figure. Point A is inside the shaded region and so is unaffected by the limiting, while po

FIG. 2.5. The alternative limiting procedures.
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B, C, and D all lie beyond the region, and the limiting moves them in a straight line b
towards the centroid until they reach the boundary of the MP region: for points C an
this means a return to the centroid and a first order reconstruction.

Figure 2.5 also depicts an alternative limiting procedure, aimed atimproving the accur
Instead of retaining the direction of the original gradient operator, the limited gradien
defined by the point in the MP region closest to the tip of the velctdthe dashed arrows
indicate the consequent movement of the points B, C, and D. Points such as C and |
most simply dealt with by a projection step (on to the lines passing through the cent
perpendicular t@'y, andr gz, respectively) to obtain the gradient direction, followed by |
limiting step which moves the point on to the boundary of the region if it still remail
outside. In practice, however, the expense of changing the limiting procedure for poil
outweights the resulting improvement in accuracy so the simpler strategy is applied in
cases.

The limiter of Durlofskyet al. [4] considers the last three gradient operators of (2.1
together withl = 6, discards those which lie outside the MP region, and then chdf@aas
to be the remaining operator with greatest magnitude.

The maximum limited gradient (MLG) scheme of Battenal. [2] combines the two
methodologies described above. It takes all four of the operators of (2.13), limits each
in turn in the manner of the LCD scheme (2.14), (2.15), and then thkes to be the
remaining operator with largest slopie|. Figure 2.5 can again be used as an illustratiol
If the asterisks represent the four gradient operators in (2.13) then each one is lin
individually in precisely the manner of the LCD scheme, moving the gradients into
allowed range, and the point furthest away from the cell centroid is chosen—in this cas
limited position of point B. As with the LCD scheme the alternative technique of projecti
the gradient operators on to the boundary of the MP region can be used to improve
accuracy, although the resulting scheme can be prohibitively expensive.

The MLG scheme gives the most compressive of the limiters described so far, anc
only one which reduces to the Superbee limiter [16] in one dimension, but it is also
most expensive since it requires the computation of four gradient planes. An even r
accurate scheme (but yet more expensive) can be devised by including the Green—(
and limited least-squares operators [3] in (2.13) and applying the MLG procedure to the:
well. For practical purposes though, it is desirable to construct as few gradient operatc
possible.

It should be noted that the neither the MLG, the Durlofsky, nor the LCD scheme depe
continuously on the solution data, since the limited gradient operator changes discon
ously as the operator on which it is based moves out of the sector enclosing the MP re
(see Fig. 2.5). While this is of little consequence for genuinely time-dependent proble
it may interfere with convergence to a steady state by causing limit cycling. The inclus
of the “projection” step in the limiting procedure makes the LCD scheme continuous
well as improving its accuracy. It is also worth commenting that the general limiting p
cedure, as described by steps (a) and (b) earlier in this section, can easily be extenc
arbitrary polygonal/polyhedral control volumes in two and three dimensions [8]. Howe\
on structured quadrilateral grids this method is considerably more diffusive than usi
standard, dimensionally split scheme, see, for example, [1], which is linearity presen
on the uniform grids used here (although it might not be on distorted grids).

A final point to make in this section is that the construction of the MP region facilitat
the creation of a range of new limited gradient operators satisfying the given maxin
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principle, even though they can generally only be imposed in a rather artificial manner.
example, the steepest gradient operator which satisfies the maximum principle is defin
the point in the MP region farthest away from the centroid of the triangle (which is alwe
a “corner” of the region, as indicated by an asterisk for the case shown in Fig. 2.4), and
can be taken to be the limited gradient, but only when a necessity for limiting is indicat
Further details and preliminary results can be found in [8] and provides a subject for fur
research.

A scheme of this form, as applied on a triangular grid, can be summarised as follow

e Calculate the gradient operat%(AlZfs’) as in the LCD scheme and check whethe
it creates any new local extrema at the edge midpoints.

—If not, selectl = %(A123).

—Otherwise calculate the new gradient operd;.tpe.g., the one with maximal slope
which still satisfies the local maximum principle. Finding a gradient operator of this type
relatively expensive, so it should only be calculated in cells where the initial reconstruc
gives rise to overshoots or undershoots. This process is significantly cheaper than fir
the three other gradient operators of the MLG limiter. In fact the local maximum princi
could be checked for all four gradient operators of the MLG limiter (2.13), but the ex
compression which results does not justify the computational expense.

2.2. Boundaries

The limiting procedure is applied very simply at boundaries of the domain. In step
of the limiting procedure only those gradient operators which can be constructed f
centroids of control volumewithin the domain are included and the others are assumec
be zero. Also, only internal solution values are considered in the search for new extr
in the reconstruction. On a triangular grid this means that only a single gradient operat
constructed (and limited) in each cell with just one boundary edge. (For the LCD scheme
replacesthe usual gradient operator.) The scheme therefore produces an exact reconst
of linear data on triangles except in cells with multiple boundary edges. The fluxes thro
the inflow boundary edges are overwritten by their exact values. When periodic boun
conditions are used no special treatment of the boundaries is needed.

2.3. Time Integration

Second order temporal accuracy may be obtained using a Runge—Kutta time-stej
method such as

Ne
Z f(ug + Fox - Lo, Ug +Fro - L) - Fig
k=1

c
|

2 RV

N
1 - At~ L 5 L E
8+1——<u8+u g f(UO+r0k'LOsUk+rkO'Lk)'nk>
k=1

At _
=uj — W((Suo + 8Ug). (2.16)

However, the cost of the reconstructions and the local Riemann solutions is prohibiti
expensive, so the following approximation to the above explicit update scheme [18] is L
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instead:
Ne
At
n n 2
O__VE UO“rrOk )‘nk

LIS —U - — U0+r0k LO,Uk+rko L) Nk. (2.17)

Mz

k=1

It has been shown [2] that on triangular grids any limiter of the type described in t
paper satisfies the maximum principle for a restriction on the time-step within each
given by

v
At< ——o (2.18)

3max|i - Al
The maximum is taken over the adjacent cells indexed hekeMgte that a slight drawback
with the simplified scheme (2.17) is that it may allow small overshoots and undershoo
appear in the solution. However, these do not interfere noticeably with the overall robust
of the algorithm.

2.4. Results

Numerical experiments have been carried out to test the behaviour of the scheme
scribed in this paper. The first test presented here is the advection of an initial profile g
by the double sine wave function

u = sin(2r x) sin(2y), (2.19)

with velocity » = (1, 2)T over the domain [01] x [0, 1]. This problem has been solved on
three types of grid, each of which is illustrated in Fig. 2.6. Periodic boundary conditic
are applied. Note that the advection velocity has been chosen so that it is not ali
with mesh edges, to provide a more strenuous test than was used to produce the ac
study of schemes of this type presented in [2], and hence there is some loss of accur:
comparison.

Errors in thelL; and L., norms for the solutions obtained whega=1.0 are shown in
Figs. 2.7 and 2.8. In all of the numerical experiments the ratipAx = 0.16, whereAx is
the length of any horizontal grid edge in Fig. 2.6, giving a CFL of about 0.358.

The firstorder scheme is unsurprisingly the least accurate in each case, while the unlir
scheme is easily the best: it is the oscillations it allows in solutions with rapidly varyi
gradients which cause problems when applied to nonlinear systems since they can le
unphysical situations. On grid B each of the higher order schemes produces very si
results, none of which can compete with the accuracy attained on a uniform quadrila

A B Q

FIG. 2.6. The three grid types used for the numerical experiments.
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FIG. 2.7. Errors for the double sine wave test case on grid A.

grid of type Q (using a dimensionally split upwind scheme with the Superbee limiter [1¢
particularly when taking into account the fact that this grid contains only half the num|
of cells of the others. It can be seen from Table | that none of the limited schemes achi
even first order accuracy on the finest grids tested. This seems to be due to the aniso
connectivity of this type of grid and its effect on the limiting procedure. In essence,
limiting is applied to solution values at the midpoints of the cell edges. On type A gr
these lie on the midpoints of the straight lines joining the cell centroids (see Fig. 2.9), sc
limiting procedure gives higher accuracy than on grid B where this is not generally the ¢
Furthermore, grid B will generally give a smaller MP region, simply because the bound
(2.12) are tighter due to the centroids of the adjacent triangles being closer together w
will generally give a smaller difference inbetween cell centres.

Note that other schemes which calculate only a single gradient operator, such as lir
least-squares [3], produce results which are almost indistinguishable from those of the
scheme and so they are not presented here.

L; Error Lo, Error

LOG(dx)

LOG(error)
. & )
t=3
[l

x> b o
o o o
PR BT N |

23
1

LOG(dx}

FIG. 2.8. Errors for the double sine wave test case on grid B.



IMPROVED MUSCL-TYPE SCHEMES 65

TABLE |
Numerical Orders of Accuracy and Relative cpu Times for the Double Sine Wave
Test Case and Peak Solution Values for the Rotating Cone Test Case

Grid type A Grid type B
Scheme Time L, Lo Peak L, Lo Peak
First order 1.00 0.87 0.88 0.23 0.90 0.90 0.28
LCD 1.32 0.91 0.67 0.52 0.88 0.70 0.48
Projected LCD 1.50 1.87 1.17 0.85 0.85 0.67 0.68
MLG 1.73 1.82 0.85 0.93 0.87 0.75 0.62
Unlimited 1.23 2.00 2.00 0.95 1.99 1.99 0.96
Quadrilaterals 0.75 1.65 0.91 0.86 1.65 0.91 0.86

On type A grids the advantages of adding the projection step to the limiting procec
become clear, particularly in the comparisons oflthgerror. The projected LCD scheme
provides a clear improvement, even over the solution obtained on the quadrilateral |
When taking into account the differing numbers of grid cells (which would shift the gra
of the quadrilateral scheme 0.15 to the right), the projected LCD scheme still produc
solution of a prescribed accuracy faster than the structured grid schemes. (The figures
as times in Table | are relative to the time taken to calculate the first order solution
are all found for 64x 64 grids.) On the finest grids though, it is the MLG scheme whic
achieves the highest order of accuracy in terms ottherror, the wider choice of gradient
operators being more useful here than the projection of a single one.

A secondtest case has been used to further clarify the relative merits of the given sche
Itinvolves the circular advection of the “cone,” given by the initial conditions (wthei®.0)

0 otherwise (2.20)

U {co§(2nr) forr <0.25
wherer2 = (x + 0.5)2 + y2, with velocityx = (—2ry, 27 x)" around the domain{1, 1] x
[—1, 1], with zero conditions at each of the inflow boundaries. The initial profile should
advected in a circle without change of shape until it returns to its original position wt
t=1.0.

Solution profiles obtained on 6464 grids of types A and B are shown in Figs. 2.1(
and 2.11, respectively. The maximum CFL within the computational domain was 0.3
The corresponding peak solution values are shown in Table I. Of the schemes pres
on triangular grids, MLG is clearly the most compressive on grid type A, confirming wi

A | (3@ B &

FIG. 2.9. Bounding points (circles) for the limiting of the reconstruction for the two grid types.
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Exact Solution First Order

©

LCD Projected LCD

MLG Quadrilaterals

FIG. 2.10. Solutions for the rotating cone test case on grid type A.

was seen for the first test case, although there is some small upstream distortion ¢
profile. This is not apparent in the projected LCD solution and this is considerably be
than the standard LCD approach. However, none of the unstructured grid schemes me
the performance of the dimensionally split Superbee limited upwinding on quadrilater
On grid B the projected LCD scheme is now the best of the triangular grid methods. T}
is little to choose between the solutions obtained from this and the MLG scheme, bui
relative cpu times in Table I indicate the greater efficiency of the former.

In general, it can be seen that the multidimensional projection step improves the L
scheme considerably, to the point where the solutions are at least as accurate as thos
duced by the more expensive MLG scheme on all but the most uniform grids. Using the
jection step also seems to be particularly advantageous for reducing the errord.ig the
norm.

3. SYSTEMS OF EQUATIONS

The extension of these cell-centred MUSCL-type finite volume schemes to nonlir
systems of equations is straightforward. The conservative equations take the general
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Exact Solution First Order

O

LCD Projected L.CD

MLG Quadrilaterals

2

FIG. 2.11. Solutions for the rotating cone test case on grid type B.

U +E +G, =0 (3.1)

in which U is the vector of conserved variables @nds are the conservative flux vectors.
These are defined explicitly for the shallow water equations in Appendix A.

Integrating Eq. (3.1) over a control volunse (taken as before to be a grid cell) anc
applying the divergence theorem to the flux integral results in

//qmw+%@ﬁyﬁzq (3.2)

whereii again represents an outward pointing normal to the boundary. Approximating
boundary integral and definirid, to be the average value bf over the control volume&
leads to the finite volume discretisation

N
8U‘O 1 - * * =
v e G e (33)
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whereE} andG;; are the numerical flux function¥y, is the area of the control volumsl,
is the number of edges of the control volume, @ds the outward pointing normal to the
kth edge, scaled by its length.

The generalisation of the first order scalar numerical flux function of (2.5) to system:
equations is given by

" 1 S
(E"(Ug, Up), G* (U, Up)) - N = é((Eo, Go) + (B, G)) - Nk
1~ o~

in whichA =9E/9U andB = dG/dU are the flux Jacobians. The constructiorcdndB,
the conservative approximations to the Jacobian matrices, and subsequently the num
flux at the midpoint of the cell edge, follows the technique suggested by Roe [14].

The evolution of the discontinuous approximation to the solution is modelled by c
structing a series of approximate Riemann problems at the edge midpoints with “left”
“right” states U, andy,, respectively, at edde(the internal and external states relative t
the control volume), of theeconstructedolution, cf. Eq. (2.8) and Fig. 2.2. Each Rieman
problem is solved using the decomposition of the flux difference across the edge int
characteristic components. This results in a high order numerical flux function forkedc
given by

L1 I R
(B (Uok Uyo), G* (U, Ugo)) + ik = 5 (Bax, Go) + (B, Gieo)) Tl — 5 D & |31
j=1
(3.5)

Here N,, is the number of components (or “waves”) in the decomposition, the tilde re
resents the Roe average value at the discontinuity (which is constructed so as to e
that the linearised decomposition is conservative [1d)])is a wave “strength”al andr/,
respectively, the eigenvalues and eigenvectors of the matrig - i, represent the speed
of the wave and the transformation of a perturbation of the characteristic variables in
perturbation of the conservative variables. Details of the exact values of these average
the shallow water equations are supplied in Appendix A. The substitution of (3.5) into (3
together with the application of an appropriate time-stepping scheme (see Subsectior
gives the final algorithm.

The slope limiting is commonly applied to the primitive variables which, for the Eul
equations, ensures a positive reconstruction of both deansityressure (although this may
not be maintained by the subsequent application of Roe’s approximate Riemann solver’
the shallow water equations both primitive and conservative variable limiting give posit
depths so there is less advantage in using the former, which is also slightly more exper
Here the limiters are applied directly to the conservative variables, mainly for the purpc
of speed and simplicity. In many ways characteristic limiting would seem to be the nr
natural implementation, see, for example, [2], but its application to Roe’s scheme is
straightforward [8], and the results are not improved greatly so they are not presented

3.1. Boundary Conditions

Simple characteristic boundary conditions are applied, in which the flux at a bounc
edge is evaluated directly using information from within the boundary cell to supplem
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the imposed boundary values. The physical conditions applied at a given edge corres
to the positive eigenvalues of the mat@x= A cosf + B sind, where (co®, sing)" is the
local unitinward normal to the boundary. The conservative flux Jacobian matriandB
are given for the shallow water equations in Appendix A.

At a freestream boundary four possibilities arise: (a) supercritical inflow, where all th
eigenvalues are positive and the boundary flux is determined completely by the imp
solution values; (b) supercritical outflow, where no eigenvalue is positive and the 1
is calculated from internal solution values; (c) subcritical inflow, where one eigenva
is negative and whose corresponding Riemann invariant is given its internal value
everything else imposed; and finally (a) subcritical outflow, for which one eigenvalue
positive and only the value of its associated Riemann invariant is imposed. At a solid \
the normal velocity component is set to zero while the rest of the information require
calculate the flux is taken from the interior of the domain.

3.2. Results

The first test case considered here is a simple steady state problem with an exact sol
represented by an oblique hydraulic jump in a channel, induced by a wedge [1]. The ge
etry of the channel is indicated in Fig. 3.1: itis 40 m long, 30 m wide at inflow and the fc
of the wedge is 10 m in from the inflow boundary. The slope of the wedge is chosen he
be 8.95, and inflow conditions ofi = 1.0 m,u =8.57 ms*, andv = 0.0 ms™* (implying a
Froude number oF = 2.74) are imposed. The resulting steady state flow should be pur
supercritical and divided into two regions by an oblique hydraulic jump at an angle of .
to the upstream flow. Downstream of this jump the exact solution is givem by1.5 m
andFy =2.074.

Three solutions are illustrated in Fig. 3.1 and there is little to choose between them.
final solution was obtained using a dimensionally split, van Leer limited scheme on areg
40 x 30 cell quadrilateral grid, giving the same mesh scale as the 2609 cell triangular
shown, but fewer cells, so it is unsurprising that this appears to be the most diffusive o
schemes. When sampling the solution at a point on the outflow boundary midway betv
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FIG. 3.1. Grid and depth contours for the oblique hydraulic jump test case.



M. E. HUBBARD

70

each of the schemes predicted the downstream flow param

the lower wall and the jump,

accurate to two decimal places.

The next test case presented is of shallow water flow for a partial dam break problen
The computational domain consists of a 200kn200 m basin bisected by a dam. Wher

t=0.0 s a break in the dam appears between 95 and 170 m from one end. Ihitially

5 m on the other, while the water has zero velocity everywher

10 m on one side anidl
The 3688-cell grid on which the calculations were carried out is shown in Fig. 3.2. Eacl

the boundaries is treated as a solid wall except those on the left and right which were ¢

simple non-reflecting boundary conditions.

Figure 3.2 also shows the surface elevation of the wateeat.2 s for the MLG and

projected LCD schemes (using the grid shown) and a superbee limited scheme ona un
50 x 50 quadrilateral grid. The projected LCD scheme seems to give a slightly smoo

solution than the MLG scheme, and both appear to be better than the quadrilateral sc

in the sharpness of capturing of the downstream hydraulic jump. The dimensionally
scheme also appears to be tending towards instability within the downstream vortex cre

at the lower edge of the break. The result obtained using the projected LCD scheme is

pictured in Fig. 3.3.

Finally, the schemes have been compared using a circular dam break test case. Ini
two regions of still water are separated by a cylindrical wall (radius 11 m) centred in

50 x 50 m square domain shown in Fig. 3.4. The depth of the water is 10 m within-

cylinder ard 1 m outside. The wall is then removed and the solutions shown in Figs.

and 3.5 are after

0.69s.

Once more, the solutions are very similar. The radial symmetry is slightly distorted
the effects of the grid in each case, but otherwise the solutions are very accurate. |
cases the MLG and projected LCD schemes have given similar solutions but the extra s

of the new scheme gives it the advantage in terms of efficiency.

MLG

Quadrilaterals

T A A A T T A A A A A A AT A AT AT AT AT APA AT AT A AAY,|
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T T OO Y O PP 9L LS L Lo P L iTas
R ARIRH RN R I IR IRIR IS RIRRISRIRRS R

Projected LCD

FIG. 3.2. Grid and depth contours for the partial dam break test case.
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FIG. 3.3. Projected LCD solution for the partial dam break test case.
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FIG. 3.4. Grid and depth contours for the circular dam break test case.
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FIG. 3.5. Projected LCD solution for the circular dam break test case.

4. CONCLUSIONS

In this paper the construction, on triangular grids, of second order accurate, cell ce
finite volume schemes which satisfy a local maximum principle has been discussed.
methods are based on MUSCL-type schemes [18] in two dimensions in which a lir
reconstruction of the solution is created within each cell from local data, the gradien
which is limited to impose the desired local maximum principle on the approximation. T
methods have been tested on the scalar advection equation and then extended to nol
systems of equations via Roe’s approximate Riemann solver.

The limiters which satisfy the maximum principle are defined using constraints app
at the midpoints of the edges of the cells. It has been shown that these constraints de
region within which every limiter of the chosen type lies. Having defined this region, it
possible to use the multidimensional nature of the problem to apply a new limiting strat
to the existing schemes which improves their accuracy. It is also possible to cons
new schemes using these ideas, but this has been left as a subject for future researc
“projected” limiter schemes are cheaper than the most accurate of the previously constr
limiters, and in the scalar case it is often considerably more accurate.

The scalar schemes have also been successfully applied to the shallow water equ
using Roe’s scheme, and accurate results have been obtained by applying the limiting p
dure to the conservative variables. Although the improvement in accuracy obtained by
the new scheme is less apparent than in the scalar case, it is still significantly more effi
than the best of the existing schemes. Research into more robust and accurate treat
of source terms and boundary conditions associated with the shallow water equatio
ongoing.

APPENDIX A: THE SHALLOW WATER EQUATIONS

The shallow water equations depend on the conservative variables and fluxes giver
h hu hv
U=|hu|, E=[h2+% ]|, G= huw |, (A.1)
hv huv hv? + g—'f
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whereh is the depth of the flowy andv are thex- andy-velocities, and) is the acceleration
due to gravity, and result in the following flux Jacobians,

0 1 0 0 0 1
JoE G
A=—= c2—u?2 2u 0o, B=— = —uv v u|, (A2)
au au
—uv v ou -2 0 v

wherec = ./gh s the gravity wave speed.
In Roe’s approximate Riemann solver the eigenvalues and eigenvectors of the matr

0 Ny Ny
A,B) -A=| (@—0)n,—0dn, 20ny +Iny any (A.3)
—0ony + (€2 — 3%)ny ny ting + 2ony

are

Mo=0ng+ony+€&  Ap={0n+dny,  Ag={0nx+ony — & (A.4)
and

1 0 1
BE=0+¢Eng |, = —¢Cny |, fa=] G-—Cny |, (A.5)
v+ Eny Eny v —€ny

respectively, and the corresponding wave strengths in (3.5) are given by

. Ah 1 .
&1 =~ + o= (Athun, + Achv)ny — (n, + Tny) Ah)

Gy = %((A(hv) — §Ah)n, — (A(hu) — GiAh)ny)

a3 = %h - %(A(hu)nX + A(hv)ny — (@in, + ony)Ah), (A.6)

in which the Roe average states are

GZURx/hR-i-UL\/W ZUR«/hR‘i'UL«/H - fg(hr+hy) A7)
Vhr+vhL Vhr+vh 2 ’

and the difference operator is given by

(o4

A-=0Or— (L. (A.8)
In two dimensions the subscriptsand-g represent the interior and exterior edge midpoir

values relative to the cell under consideration.
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