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A framework is presented for the construction of multidimensional slope limiting
operators for two-dimensional MUSCL-type finite volume schemes on triangular
grids. A major component of this new viewpoint is the definition of multidimensional
“maximum principle regions.” These are defined by local constraints on the linear
reconstruction of the solution which guarantee that an appropriate maximum principle
is satisfied. This facilitates both the construction of new schemes and the improvement
of existing limiters. It is the latter which constitutes the bulk of this paper. Numerical
results are presented for the scalar advection equation and for a nonlinear system,
the shallow water equations. The extension to systems is carried out using Roe’s
approximate Riemann solver. All the techniques presented are readily generalised to
three dimensions. c© 1999 Academic Press
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1. INTRODUCTION

In one dimension, upwind finite volume schemes have developed into reliable tools for
producing accurate numerical approximations of hyperbolic systems of partial differential
equations. In higher dimensions it has proved difficult to attain the same degree of robustness
and accuracy with simple extensions of these one-dimensional techniques, particularly on
unstructured grids. This is in part because the additional multidimensional nature is not
exploited sufficiently. As a consequence, a great deal of research has been carried out
into the generation of genuinely multidimensional, high order schemes which retain the
properties of those methods which have had such success in one dimension.

High resolution schemes for conservation laws in one dimension are usually constructed
using some form of TVD (total variation diminishing) limiter (cf. [16, 11]) so that high
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order accuracy can be achieved while avoiding unphysical oscillations in the solution. One
commonly used approach is the slope limiting (MUSCL) technique of van Leer [17], in
which the limiter is applied in a geometric manner, to the gradients of a piecewise linear
reconstruction of the solution, to create a monotone scheme. In more than one dimension
the generalisation of the TVD condition proves to be prohibitively restrictive on Cartesian
meshes because the resulting scheme can be no more than first order accurate [6], and
difficult to define on arbitrary unstructured meshes. Consequently, Spekreijse [15] proposed
a new class of monotone scheme, based on positivity of coefficients, a property which is
simple to define in any number of dimensions. Much subsequent research has been directed
towards multidimensional numerical schemes which satisfy properties of this type, usually
based on ensuring that some form of local maximum principle is satisfied. More recently,
there has been a great deal of work on limiting reconstructed solutions on unstructured grids;
see, for example, the work of Perthame and Qiu [13] in which interpolated solution values
are limited solely to avoid unphysical negative solution values (e.g., of density and pressure
in the Euler equations), or the local extremum diminishing (LED) schemes of Jameson
[10]. More closely related still to the work presented here are the slope limiting procedures
for multidimensional cell-centre finite volume schemes for unstructured triangular meshes
proposed by Barth and Jesperson [3], Durlofskyet al. [4], Liu [12], and Battenet al. [2].
Each of these schemes involves the construction of an appropriate linear representation
of the solution within a triangular cell which is then limited in a manner which enforces
a positivity constraint on the scheme. This paper proposes a way in which these limiting
techniques can be improved by taking more account of the multidimensional nature of the
problem.

The general two-dimensional MUSCL-type numerical scheme for the solution of the
scalar advection equation is described in Section 2. Some existing techniques for recon-
structing and limiting the local solution gradients are then discussed briefly, followed by
a simple technique for improving the accuracy of many of these limiting procedures. This
involves the construction of a “maximum principle region” for each cell, within which a
gradient operator must lie in order to satisfy the desired maximum principle. The frame-
work described also allows the construction of new schemes, but discussion of these is kept
to a minimum since a scheme using these ideas has yet to be devised which consistently
improves on the existing methods (some preliminary results for a maximally compressive
limiter are presented in [8]). This is an area which warrants further research. A critical
comparison is then made between the results obtained from the schemes described.

Section 3 extends the applications of these methods to a nonlinear system of equations,
specifically the shallow water equations. The basic high order scheme is described, in
which Roe’s approximate Riemann solver is employed at grid edges, locally decomposing
the system into components to which the scalar scheme is applied.

2. THE SCALAR ADVECTION EQUATION

In conservation form the two-dimensional scalar advection equation is written

ut + fx + gy = 0, (2.1)

where the conservative fluxesf = f (u) and g= g(u) are functions of the solution
variableu.
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A MUSCL-type cell-centre finite volume method for the numerical solution of the scalar
advection equation is described as follows. Integrate (2.1) over a control volume,Ä say
(taken here to be a single grid cell) and apply the divergence theorem to the resulting flux
integral, giving the equation∫ ∫

Ä

ut dx dy+
∮
∂Ä

Ef · dEn = 0, (2.2)

where Ef = ( f, g)T is the flux function andEn represents an outward pointing normal to the
boundary∂Ä of the control volume.

Approximation of the boundary integral in (2.2) leads to the finite volume discretisation

du0

dt
= − 1

VÄ

Ne∑
k=1

Ef ∗k · Enk, (2.3)

in which u0 is defined to be the average value ofu over the control volumeÄ, Ef ∗k is a
numerical flux function,VÄ is the area of the control volume,Ne is the number of edges it
has, andEnk is the outward pointing normal to thekth edge, scaled by its length. Note that
since the control volumes coincide with the grid cells, the numerical flux functionEf ∗k is an
approximation to the flux at a particular grid edge.

Assuming that the approximation tou is constant within each cell and discontinuous at
the cell edges in general, as illustrated in Fig. 2.1, a scheme which is first order accurate in
space and satisfies an appropriate local maximum principle is obtained by introducing an
upwind bias into the evaluation of the numerical flux function. Taking as an example the
kth edge of cell 0 in Fig. 2.1, the upwinding is applied [7] by defining

Ef ∗(u0, uk) · Enk =
{

u0 Ẽλ · Enk if Ẽλ · Enk ≥ 0

uk Ẽλ · Enk otherwise,
(2.4)

whereuk is the value ofu in the adjacent grid cell and̃Eλ is an appropriate local average
of the advection velocityEλ= ( ∂ f

∂u ,
∂g
∂u )

T, evaluated from the solution valuesu0 anduk. Note
that an equivalent expression to (2.4) is given by

Ef ∗(u0, uk) · Enk = 1

2
( Ef 0+ Ef k) · Enk − 1

2
|Ẽλ · Enk|(uk − u0), (2.5)

FIG. 2.1. The limiting planes as defined for a triangular control volume (left) and a piecewise constant
reconstruction of the solution (right).
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FIG. 2.2. A piecewise linear reconstruction of the solution for triangular control volumes.

which is generally preferred because of its symmetry. Although only triangular grid cells are
illustrated in Fig. 2.1, the numerical fluxes (2.4) and (2.5) can be used on general polygonal
cells, such as quadrilaterals.

2.1. Gradient Operators and Higher Order Schemes

Higher order spatial accuracy is achieved by introducing a higher order reconstruction
of the variableu within each grid cell. For example, a piecewise linear approximation to
the solution, such as that shown in Fig. 2.2, which is exact for linear initial data, leads to a
method which is second order accurate in space.

Thus, given an initial constant (or average) solution valueū within a cell we carry out a
linear reconstruction ofu within that cell. This is expressed as

u = ū+ Er · EL, (2.6)

whereEr is a position vector relative to the centroid of the cell andEL is a gradient operator,
yet to be defined. It is easy to show that such a reconstruction is conservative in the sense that

1

VÄ

∫ ∫
Ä

u dx dy = ū. (2.7)

It can also be shown [2] that when (2.7) holds the resulting numerical scheme (2.3) will
satisfy a local maximum principle for an appropriate restriction on the time-step as long as
the reconstruction (2.6) within each cell does not lead to the creation of any new extrema at
themidpointsof the edges of that cell. This is less restrictive than the often used constraint
[3] that no new extrema be created at the cell vertices.

The numerical flux function of Eq. (2.5) at a cell edge is now written in terms of the
reconstructed solution values in the cells on either side of the edge and evaluated at the
midpoint, as depicted in Fig. 2.2. Thus,Ef ∗, as substituted into (2.3) is written

Ef ∗k = Ef ∗(u0k, uk0) = Ef ∗(u0+ Er 0k · EL0, uk + Er k0 · ELk), (2.8)

whereEr i j is the vector from the centroid of celli to the midpoint of the edge between cellsi
and j , and ELi is the gradient of the reconstructed solution in celli . In the notation used here
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u0k is considered to be aninterior reconstructed solution value relative to the cell under
consideration anduk0 is the correspondingexteriorvalue, taken from the adjacent cell (see
Fig. 2.2). As in the MUSCL approach, the discontinuity in the reconstruction at the cell
edge motivates the use of a Riemann solver to evaluate the fluxes here. It remains to define
an appropriate gradient operatorEL with which to create the linear reconstruction of the
solution within each grid cell.

A simple gradient operator, which is exact for linear data, can be defined on any grid by
taking the (average) solution value in three arbitrarily chosen, but preferably adjacent, cells
(i , j , andk say, forming a triangle with anticlockwise indexing of its vertices) and defining

E∇(4i jk ) =



(− nx
nu

− ny

nu

)
for nu ≥ ε

(
0
0

)
otherwise.

(2.9)

Hereε ≈ 10−10 is a specified tolerance, andnx, ny, andnu are the components of the vector
n normal to the plane, defined by the trianglei jk in xyu-space, cf. Fig. 2.1, and given by

n = (Pi − Pk)× (P j − Pk), (2.10)

where

P∗ =
 x∗

y∗
u∗

 . (2.11)

The vectorn has been constructed in such a way thatnu always has the same sign as
the area of1i jk . The second option in (2.9) deals with the possibility of1i jk having
a non-positive area and rejects any such triangle as a basis for reconstruction. Figure 2.3
illustrates that this can happen even on relatively uniform grids. Note also that any consistent
local approximation toE∇u may be used in place of (2.9), e.g., the Green–Gauss and linear
least-squares approximations used in [3].

SelectingEL in (2.8) to be theE∇ operator of (2.9) leads to a second order accurate method
(a linear solution is modelled exactly) but doesn’t prohibit overshoots and undershoots at
the midpoints of the cell edges, so the scheme does not satisfy a local maximum principle.
In order to impose this the gradient operatorEL must be defined as a “limited” form ofE∇.

2.1.1. Limited gradient operators.The imposition of a local maximum principle, as
used in the work of [12, 4, 2], can be achieved by constraining the gradient operator to

FIG. 2.3. A reconstruction triangle with negative area (shaded).
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FIG. 2.4. A maximum principle region (shaded).

lie within a “maximum principle (MP) region.” The MP region for a given triangle can be
represented simply by choosing the cell centroid as the origin and then constructing the
region around it defined by the inequalities

min(uk − u0, 0) ≤ Er 0k · EL ≤ max(uk − u0, 0) (2.12)

for k= 1, 2, 3 (on triangles), whereEr 0k is the vector from the centroid of cell 0 to the
midpoint of the edge between cells 0 andk. An example of such a region is depicted in
Fig. 2.4. The gradient operatorEL = (x, y)T is most easily considered as a vector in two-
dimensional space; then each pair of inequalities in (2.12) can be depicted by two parallel
lines (one solid and one dashed in the figure) perpendicular to the relevant vectorEr 0k.
Figure 2.4 illustrates a case whereu1, u2> u0 andu3< u0. If uk−u0 has the same sign for
eachk then the MP region contains only the centroid of the triangle, as would be expected
since this indicates a local extremum. Hence, any limiting procedure of the type considered
in (2.12) reduces the scheme locally to first order in these cases.

However, the constraints given by (2.12) ensure that the reconstruction has the following
two properties:

• No new solution extrema are created at the midpoints of the cell edges, enforcing
the maximum principle.
• u0k− u0 has the same sign asuk− u0.

Note that this differs from the work of Barth and Jespersen [3] who, in addition, propose
that

• uk0− u0k has the same sign asuk− u0.

This, in combination with the other two properties, generalises the one-dimensional TVD
constraint on the reconstruction, but it is not necessary for positivity and, as in [4, 12, 2], is
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not enforced in this work. It is not clear how a MP region could be constructed which would
ensure the third property, but a simple post-processing step, in which the reconstructed
solution within the offending cells is limited a second time (so thatEL → α∗ EL), would be
enough to attain it.

Existing limited schemes based on (2.9) can be expressed quite simply, in two stages, as

(a) Construct one or more of the gradient operators

E∇(4123), E∇(4023), E∇(4103), E∇(4120), (2.13)

(in the notation of (2.9) and Fig. 2.1).
(b) Limit a gradient operator chosen from (2.13).

Importantly, the first of these two steps ensures that the reconstruction of a linear solution is
exact (for higher order accuracy), whichever of the four gradient operators is chosen, and the
limiting procedure will not interfere with this. As mentioned earlier, the list given in (2.13)
can be augmented by the Green–Gauss (E∇GG) and the linear least-squares (E∇LLS) gradient
reconstructions suggested in [3], both of which can be treated in the same manner in the
second stage. In effect, step (a) defines a finite set of possible directions for the reconstructed
gradient, and step (b) chooses one of these directions and bounds the magnitude of the slope.

The limited central difference (LCD) scheme is the simplest and cheapest approach of
the type described above. It considers only the operatorE∇(4123) in step (a), and then limits
this by setting

αk =


max(uk − u0,0)
Er 0k · EL if Er 0k · EL > max(uk − u0, 0)

min(uk − u0,0)
Er 0k · EL if Er 0k · EL < min(uk − u0, 0)

1 otherwise

(2.14)

for each edgek, from which the LCD gradient operator is calculated using

ELLCD = α E∇(4123) =
(

min
k=1,2,3

αk
)
E∇(4123). (2.15)

The action of this limiter is illustrated in Fig. 2.5. The initial operatorE∇(4123)might place
the tip of the vectorEL = (x, y)T at any one of the four points indicated by asterisks in the
figure. Point A is inside the shaded region and so is unaffected by the limiting, while points

FIG. 2.5. The alternative limiting procedures.
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B, C, and D all lie beyond the region, and the limiting moves them in a straight line back
towards the centroid until they reach the boundary of the MP region: for points C and D
this means a return to the centroid and a first order reconstruction.

Figure 2.5 also depicts an alternative limiting procedure, aimed at improving the accuracy.
Instead of retaining the direction of the original gradient operator, the limited gradient is
defined by the point in the MP region closest to the tip of the vectorEL. The dashed arrows
indicate the consequent movement of the points B, C, and D. Points such as C and D are
most simply dealt with by a projection step (on to the lines passing through the centroid
perpendicular toEr 02 andEr 01, respectively) to obtain the gradient direction, followed by a
limiting step which moves the point on to the boundary of the region if it still remains
outside. In practice, however, the expense of changing the limiting procedure for point B
outweights the resulting improvement in accuracy so the simpler strategy is applied in such
cases.

The limiter of Durlofskyet al. [4] considers the last three gradient operators of (2.13)
together withEL = E0, discards those which lie outside the MP region, and then choosesELDurl

to be the remaining operator with greatest magnitude.
The maximum limited gradient (MLG) scheme of Battenet al. [2] combines the two

methodologies described above. It takes all four of the operators of (2.13), limits each one
in turn in the manner of the LCD scheme (2.14), (2.15), and then takesELMLG to be the
remaining operator with largest slope| EL|. Figure 2.5 can again be used as an illustration.
If the asterisks represent the four gradient operators in (2.13) then each one is limited
individually in precisely the manner of the LCD scheme, moving the gradients into the
allowed range, and the point furthest away from the cell centroid is chosen—in this case the
limited position of point B. As with the LCD scheme the alternative technique of projecting
the gradient operators on to the boundary of the MP region can be used to improve the
accuracy, although the resulting scheme can be prohibitively expensive.

The MLG scheme gives the most compressive of the limiters described so far, and the
only one which reduces to the Superbee limiter [16] in one dimension, but it is also the
most expensive since it requires the computation of four gradient planes. An even more
accurate scheme (but yet more expensive) can be devised by including the Green–Gauss
and limited least-squares operators [3] in (2.13) and applying the MLG procedure to these as
well. For practical purposes though, it is desirable to construct as few gradient operators as
possible.

It should be noted that the neither the MLG, the Durlofsky, nor the LCD scheme depends
continuously on the solution data, since the limited gradient operator changes discontinu-
ously as the operator on which it is based moves out of the sector enclosing the MP region
(see Fig. 2.5). While this is of little consequence for genuinely time-dependent problems,
it may interfere with convergence to a steady state by causing limit cycling. The inclusion
of the “projection” step in the limiting procedure makes the LCD scheme continuous as
well as improving its accuracy. It is also worth commenting that the general limiting pro-
cedure, as described by steps (a) and (b) earlier in this section, can easily be extended to
arbitrary polygonal/polyhedral control volumes in two and three dimensions [8]. However,
on structured quadrilateral grids this method is considerably more diffusive than using a
standard, dimensionally split scheme, see, for example, [1], which is linearity preserving
on the uniform grids used here (although it might not be on distorted grids).

A final point to make in this section is that the construction of the MP region facilitates
the creation of a range of new limited gradient operators satisfying the given maximum
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principle, even though they can generally only be imposed in a rather artificial manner. For
example, the steepest gradient operator which satisfies the maximum principle is defined by
the point in the MP region farthest away from the centroid of the triangle (which is always
a “corner” of the region, as indicated by an asterisk for the case shown in Fig. 2.4), and this
can be taken to be the limited gradient, but only when a necessity for limiting is indicated.
Further details and preliminary results can be found in [8] and provides a subject for further
research.

A scheme of this form, as applied on a triangular grid, can be summarised as follows:

• Calculate the gradient operatorE∇(4123) as in the LCD scheme and check whether
it creates any new local extrema at the edge midpoints.

—If not, selectEL = E∇(4123).
—Otherwise calculate the new gradient operatorEL, e.g., the one with maximal slope

which still satisfies the local maximum principle. Finding a gradient operator of this type is
relatively expensive, so it should only be calculated in cells where the initial reconstruction
gives rise to overshoots or undershoots. This process is significantly cheaper than finding
the three other gradient operators of the MLG limiter. In fact the local maximum principle
could be checked for all four gradient operators of the MLG limiter (2.13), but the extra
compression which results does not justify the computational expense.

2.2. Boundaries

The limiting procedure is applied very simply at boundaries of the domain. In step (a)
of the limiting procedure only those gradient operators which can be constructed from
centroids of control volumeswithin the domain are included and the others are assumed to
be zero. Also, only internal solution values are considered in the search for new extrema
in the reconstruction. On a triangular grid this means that only a single gradient operator is
constructed (and limited) in each cell with just one boundary edge. (For the LCD scheme this
replaces the usual gradient operator.) The scheme therefore produces an exact reconstruction
of linear data on triangles except in cells with multiple boundary edges. The fluxes through
the inflow boundary edges are overwritten by their exact values. When periodic boundary
conditions are used no special treatment of the boundaries is needed.

2.3. Time Integration

Second order temporal accuracy may be obtained using a Runge–Kutta time-stepping
method such as

ū0 = un
0 −

1t

V

Ne∑
k=1

Ef (un
0 + Er 0k · ELn

0, u
n
k + Er k0 · ELn

k

) · Enk

un+1
0 = 1

2

(
un

0 + ū0− 1t

V

Ne∑
k=1

Ef (ū0+ Er 0k · ĒL0, ūk + Er k0 · ĒLk
) · Enk

)

= un
0 −

1t

2V
(δu0+ δū0). (2.16)

However, the cost of the reconstructions and the local Riemann solutions is prohibitively
expensive, so the following approximation to the above explicit update scheme [18] is used
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instead:

ū0 = un
0 −

1t

2V

Ne∑
k=1

Ef (un
0 + Er 0k · ELn

0

) · Enk

un+1
0 = un

0 −
1t

V

Ne∑
k=1

Ef (ū0+ Er 0k · ELn
0, ūk + Er k0 · ELn

k

) · Enk. (2.17)

It has been shown [2] that on triangular grids any limiter of the type described in this
paper satisfies the maximum principle for a restriction on the time-step within each cell
given by

1t ≤ V

3 maxk|Ẽλ · Enk|
. (2.18)

The maximum is taken over the adjacent cells indexed here byk. Note that a slight drawback
with the simplified scheme (2.17) is that it may allow small overshoots and undershoots to
appear in the solution. However, these do not interfere noticeably with the overall robustness
of the algorithm.

2.4. Results

Numerical experiments have been carried out to test the behaviour of the schemes de-
scribed in this paper. The first test presented here is the advection of an initial profile given
by the double sine wave function

u = sin(2πx) sin(2πy), (2.19)

with velocity Eλ= (1, 2)T over the domain [0, 1]× [0, 1]. This problem has been solved on
three types of grid, each of which is illustrated in Fig. 2.6. Periodic boundary conditions
are applied. Note that the advection velocity has been chosen so that it is not aligned
with mesh edges, to provide a more strenuous test than was used to produce the accuracy
study of schemes of this type presented in [2], and hence there is some loss of accuracy in
comparison.

Errors in theL1 and L∞ norms for the solutions obtained whent = 1.0 are shown in
Figs. 2.7 and 2.8. In all of the numerical experiments the ratio1t/1x= 0.16, where1x is
the length of any horizontal grid edge in Fig. 2.6, giving a CFL of about 0.358.

The first order scheme is unsurprisingly the least accurate in each case, while the unlimited
scheme is easily the best: it is the oscillations it allows in solutions with rapidly varying
gradients which cause problems when applied to nonlinear systems since they can lead to
unphysical situations. On grid B each of the higher order schemes produces very similar
results, none of which can compete with the accuracy attained on a uniform quadrilateral

FIG. 2.6. The three grid types used for the numerical experiments.
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FIG. 2.7. Errors for the double sine wave test case on grid A.

grid of type Q (using a dimensionally split upwind scheme with the Superbee limiter [16]),
particularly when taking into account the fact that this grid contains only half the number
of cells of the others. It can be seen from Table I that none of the limited schemes achieves
even first order accuracy on the finest grids tested. This seems to be due to the anisotropic
connectivity of this type of grid and its effect on the limiting procedure. In essence, the
limiting is applied to solution values at the midpoints of the cell edges. On type A grids
these lie on the midpoints of the straight lines joining the cell centroids (see Fig. 2.9), so the
limiting procedure gives higher accuracy than on grid B where this is not generally the case.
Furthermore, grid B will generally give a smaller MP region, simply because the bounds in
(2.12) are tighter due to the centroids of the adjacent triangles being closer together which
will generally give a smaller difference inu between cell centres.

Note that other schemes which calculate only a single gradient operator, such as limited
least-squares [3], produce results which are almost indistinguishable from those of the LCD
scheme and so they are not presented here.

FIG. 2.8. Errors for the double sine wave test case on grid B.
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TABLE I

Numerical Orders of Accuracy and Relative cpu Times for the Double Sine Wave

Test Case and Peak Solution Values for the Rotating Cone Test Case

Grid type A Grid type B

Scheme Time L1 L∞ Peak L1 L∞ Peak

First order 1.00 0.87 0.88 0.23 0.90 0.90 0.28
LCD 1.32 0.91 0.67 0.52 0.88 0.70 0.48
Projected LCD 1.50 1.87 1.17 0.85 0.85 0.67 0.68
MLG 1.73 1.82 0.85 0.93 0.87 0.75 0.62
Unlimited 1.23 2.00 2.00 0.95 1.99 1.99 0.96
Quadrilaterals 0.75 1.65 0.91 0.86 1.65 0.91 0.86

On type A grids the advantages of adding the projection step to the limiting procedure
become clear, particularly in the comparisons of theL∞ error. The projected LCD scheme
provides a clear improvement, even over the solution obtained on the quadrilateral grid.
When taking into account the differing numbers of grid cells (which would shift the graph
of the quadrilateral scheme 0.15 to the right), the projected LCD scheme still produces a
solution of a prescribed accuracy faster than the structured grid schemes. (The figures given
as times in Table I are relative to the time taken to calculate the first order solution and
are all found for 64× 64 grids.) On the finest grids though, it is the MLG scheme which
achieves the highest order of accuracy in terms of theL1 error, the wider choice of gradient
operators being more useful here than the projection of a single one.

A second test case has been used to further clarify the relative merits of the given schemes.
It involves the circular advection of the “cone,” given by the initial conditions (whent = 0.0)

u =
{

cos2(2πr ) for r ≤ 0.25
0 otherwise,

(2.20)

wherer 2= (x+ 0.5)2+ y2, with velocityEλ= (−2πy, 2πx)T around the domain [−1, 1]×
[−1, 1], with zero conditions at each of the inflow boundaries. The initial profile should be
advected in a circle without change of shape until it returns to its original position when
t = 1.0.

Solution profiles obtained on 64× 64 grids of types A and B are shown in Figs. 2.10
and 2.11, respectively. The maximum CFL within the computational domain was 0.355.
The corresponding peak solution values are shown in Table I. Of the schemes presented
on triangular grids, MLG is clearly the most compressive on grid type A, confirming what

FIG. 2.9. Bounding points (circles) for the limiting of the reconstruction for the two grid types.
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FIG. 2.10. Solutions for the rotating cone test case on grid type A.

was seen for the first test case, although there is some small upstream distortion of the
profile. This is not apparent in the projected LCD solution and this is considerably better
than the standard LCD approach. However, none of the unstructured grid schemes matches
the performance of the dimensionally split Superbee limited upwinding on quadrilaterals.
On grid B the projected LCD scheme is now the best of the triangular grid methods. There
is little to choose between the solutions obtained from this and the MLG scheme, but the
relative cpu times in Table I indicate the greater efficiency of the former.

In general, it can be seen that the multidimensional projection step improves the LCD
scheme considerably, to the point where the solutions are at least as accurate as those pro-
duced by the more expensive MLG scheme on all but the most uniform grids. Using the pro-
jection step also seems to be particularly advantageous for reducing the errors in theL∞
norm.

3. SYSTEMS OF EQUATIONS

The extension of these cell-centred MUSCL-type finite volume schemes to nonlinear
systems of equations is straightforward. The conservative equations take the general form
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FIG. 2.11. Solutions for the rotating cone test case on grid type B.

U
¯t + F

¯x +G
¯y = 0

¯
, (3.1)

in which U
¯

is the vector of conserved variables andF
¯
, G

¯
are the conservative flux vectors.

These are defined explicitly for the shallow water equations in Appendix A.
Integrating Eq. (3.1) over a control volumeÄ (taken as before to be a grid cell) and

applying the divergence theorem to the flux integral results in∫ ∫
Ä

U
¯t dx dy+

∮
∂Ä

(F
¯
,G

¯
) · dEn = 0, (3.2)

whereEn again represents an outward pointing normal to the boundary. Approximating the
boundary integral and definingU

¯0 to be the average value ofU
¯

over the control volumeÄ
leads to the finite volume discretisation

∂U
¯0

∂t
= − 1

VÄ

Ne∑
k=1

(F
¯
∗
k,G¯

∗
k) · Enk, (3.3)



68 M. E. HUBBARD

whereF
¯
∗
k andG

¯
∗
k are the numerical flux functions,VÄ is the area of the control volume,Ne

is the number of edges of the control volume, andEnk is the outward pointing normal to the
kth edge, scaled by its length.

The generalisation of the first order scalar numerical flux function of (2.5) to systems of
equations is given by

(F
¯
∗(U

¯0,U¯k),G¯
∗(U

¯0,U¯k)) · Enk = 1

2
((F

¯0,G¯0)+ (F¯k,G¯k)) · Enk

− 1

2
|(Ã, B̃) · Enk|(U

¯k − U
¯0), (3.4)

in whichA= ∂F
¯
/∂U

¯
andB= ∂G

¯
/∂U

¯
are the flux Jacobians. The construction ofÃ andB̃,

the conservative approximations to the Jacobian matrices, and subsequently the numerical
flux at the midpoint of the cell edge, follows the technique suggested by Roe [14].

The evolution of the discontinuous approximation to the solution is modelled by con-
structing a series of approximate Riemann problems at the edge midpoints with “left” and
“right” states,U

¯0k andU
¯k0, respectively, at edgek (the internal and external states relative to

the control volume), of thereconstructedsolution, cf. Eq. (2.8) and Fig. 2.2. Each Riemann
problem is solved using the decomposition of the flux difference across the edge into its
characteristic components. This results in a high order numerical flux function for edgek
given by

(F
¯
∗(U

¯0k,U¯k0),G¯
∗(U

¯0k,U¯k0)) · Enk = 1

2
((F

¯0k,G¯0k)+ (F¯k0,G¯k0)) · Enk − 1

2

Nw∑
j=1

α̃ j |λ̃ j |r̃
¯

j .

(3.5)

Here Nw is the number of components (or “waves”) in the decomposition, the tilde rep-
resents the Roe average value at the discontinuity (which is constructed so as to ensure
that the linearised decomposition is conservative [14]);α j is a wave “strength”;λ j andr

¯
j ,

respectively, the eigenvalues and eigenvectors of the matrix (A,B) · Enk, represent the speed
of the wave and the transformation of a perturbation of the characteristic variables into a
perturbation of the conservative variables. Details of the exact values of these averages for
the shallow water equations are supplied in Appendix A. The substitution of (3.5) into (3.3)
together with the application of an appropriate time-stepping scheme (see Subsection 2.3)
gives the final algorithm.

The slope limiting is commonly applied to the primitive variables which, for the Euler
equations, ensures a positive reconstruction of both densityandpressure (although this may
not be maintained by the subsequent application of Roe’s approximate Riemann solver). For
the shallow water equations both primitive and conservative variable limiting give positive
depths so there is less advantage in using the former, which is also slightly more expensive.
Here the limiters are applied directly to the conservative variables, mainly for the purposes
of speed and simplicity. In many ways characteristic limiting would seem to be the most
natural implementation, see, for example, [2], but its application to Roe’s scheme is not
straightforward [8], and the results are not improved greatly so they are not presented here.

3.1. Boundary Conditions

Simple characteristic boundary conditions are applied, in which the flux at a boundary
edge is evaluated directly using information from within the boundary cell to supplement
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the imposed boundary values. The physical conditions applied at a given edge correspond
to the positive eigenvalues of the matrixC=A cosθ +B sinθ , where (cosθ, sinθ)T is the
local unit inward normal to the boundary. The conservative flux Jacobian matricesA andB
are given for the shallow water equations in Appendix A.

At a freestream boundary four possibilities arise: (a) supercritical inflow, where all three
eigenvalues are positive and the boundary flux is determined completely by the imposed
solution values; (b) supercritical outflow, where no eigenvalue is positive and the flux
is calculated from internal solution values; (c) subcritical inflow, where one eigenvalue
is negative and whose corresponding Riemann invariant is given its internal value with
everything else imposed; and finally (a) subcritical outflow, for which one eigenvalue is
positive and only the value of its associated Riemann invariant is imposed. At a solid wall
the normal velocity component is set to zero while the rest of the information required to
calculate the flux is taken from the interior of the domain.

3.2. Results

The first test case considered here is a simple steady state problem with an exact solution,
represented by an oblique hydraulic jump in a channel, induced by a wedge [1]. The geom-
etry of the channel is indicated in Fig. 3.1: it is 40 m long, 30 m wide at inflow and the foot
of the wedge is 10 m in from the inflow boundary. The slope of the wedge is chosen here to
be 8.95◦, and inflow conditions ofh= 1.0 m,u= 8.57 m s−1, andv= 0.0 m s−1 (implying a
Froude number ofF = 2.74) are imposed. The resulting steady state flow should be purely
supercritical and divided into two regions by an oblique hydraulic jump at an angle of 30◦

to the upstream flow. Downstream of this jump the exact solution is given byhd= 1.5 m
andFd= 2.074.

Three solutions are illustrated in Fig. 3.1 and there is little to choose between them. The
final solution was obtained using a dimensionally split, van Leer limited scheme on a regular
40× 30 cell quadrilateral grid, giving the same mesh scale as the 2609 cell triangular grid
shown, but fewer cells, so it is unsurprising that this appears to be the most diffusive of the
schemes. When sampling the solution at a point on the outflow boundary midway between

FIG. 3.1. Grid and depth contours for the oblique hydraulic jump test case.
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the lower wall and the jump, each of the schemes predicted the downstream flow parameters
accurate to two decimal places.

The next test case presented is of shallow water flow for a partial dam break problem [5].
The computational domain consists of a 200 m× 200 m basin bisected by a dam. When
t = 0.0 s a break in the dam appears between 95 and 170 m from one end. Initiallyh =
10 m on one side andh= 5 m on the other, while the water has zero velocity everywhere.
The 3688-cell grid on which the calculations were carried out is shown in Fig. 3.2. Each of
the boundaries is treated as a solid wall except those on the left and right which were given
simple non-reflecting boundary conditions.

Figure 3.2 also shows the surface elevation of the water att = 7.2 s for the MLG and
projected LCD schemes (using the grid shown) and a superbee limited scheme on a uniform
50× 50 quadrilateral grid. The projected LCD scheme seems to give a slightly smoother
solution than the MLG scheme, and both appear to be better than the quadrilateral scheme
in the sharpness of capturing of the downstream hydraulic jump. The dimensionally split
scheme also appears to be tending towards instability within the downstream vortex created
at the lower edge of the break. The result obtained using the projected LCD scheme is also
pictured in Fig. 3.3.

Finally, the schemes have been compared using a circular dam break test case. Initially,
two regions of still water are separated by a cylindrical wall (radius 11 m) centred in the
50× 50 m square domain shown in Fig. 3.4. The depth of the water is 10 m within the
cylinder and 1 m outside. The wall is then removed and the solutions shown in Figs. 3.4
and 3.5 are aftert = 0.69 s.

Once more, the solutions are very similar. The radial symmetry is slightly distorted by
the effects of the grid in each case, but otherwise the solutions are very accurate. In all
cases the MLG and projected LCD schemes have given similar solutions but the extra speed
of the new scheme gives it the advantage in terms of efficiency.

FIG. 3.2. Grid and depth contours for the partial dam break test case.
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FIG. 3.3. Projected LCD solution for the partial dam break test case.

FIG. 3.4. Grid and depth contours for the circular dam break test case.
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FIG. 3.5. Projected LCD solution for the circular dam break test case.

4. CONCLUSIONS

In this paper the construction, on triangular grids, of second order accurate, cell centre
finite volume schemes which satisfy a local maximum principle has been discussed. The
methods are based on MUSCL-type schemes [18] in two dimensions in which a linear
reconstruction of the solution is created within each cell from local data, the gradient of
which is limited to impose the desired local maximum principle on the approximation. The
methods have been tested on the scalar advection equation and then extended to nonlinear
systems of equations via Roe’s approximate Riemann solver.

The limiters which satisfy the maximum principle are defined using constraints applied
at the midpoints of the edges of the cells. It has been shown that these constraints define a
region within which every limiter of the chosen type lies. Having defined this region, it is
possible to use the multidimensional nature of the problem to apply a new limiting strategy
to the existing schemes which improves their accuracy. It is also possible to construct
new schemes using these ideas, but this has been left as a subject for future research. The
“projected” limiter schemes are cheaper than the most accurate of the previously constructed
limiters, and in the scalar case it is often considerably more accurate.

The scalar schemes have also been successfully applied to the shallow water equations
using Roe’s scheme, and accurate results have been obtained by applying the limiting proce-
dure to the conservative variables. Although the improvement in accuracy obtained by using
the new scheme is less apparent than in the scalar case, it is still significantly more efficient
than the best of the existing schemes. Research into more robust and accurate treatments
of source terms and boundary conditions associated with the shallow water equations is
ongoing.

APPENDIX A: THE SHALLOW WATER EQUATIONS

The shallow water equations depend on the conservative variables and fluxes given by

U
¯
=
 h

hu
hv

 , F
¯
=

 hu

hu2+ gh2

2

huv

 , G
¯
=

 hv
huv

hv2+ gh2

2

 , (A.1)
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whereh is the depth of the flow,u andv are thex- andy-velocities, andg is the acceleration
due to gravity, and result in the following flux Jacobians,

A = ∂F
¯

∂U
¯

=
 0 1 0

c2− u2 2u 0
−uv v u

 , B = ∂G
¯

∂U
¯

=

 0 0 1

−uv v u

c2− v2 0 2v

 , (A.2)

wherec=√gh is the gravity wave speed.
In Roe’s approximate Riemann solver the eigenvalues and eigenvectors of the matrix

(Ã, B̃) · En =

 0 nx ny

(c̃2− ũ2)nx − ũṽny 2ũnx + ṽny ũny

−ũṽnx + (c̃2− ṽ2)ny ṽnx ũnx + 2ṽny

 (A.3)

are

λ̃1 = ũnx + ṽny + c̃, λ̃2 = ũnx + ṽny, λ̃3 = ũnx + ṽny − c̃, (A.4)

and

r̃
¯1 =

 1
ũ+ c̃nx

ṽ + c̃ny

 , r̃
¯2 =

 0
−c̃ny

c̃nx

 , r̃
¯3 =

 1
ũ− c̃nx

ṽ − c̃ny

 , (A.5)

respectively, and the corresponding wave strengths in (3.5) are given by

α̃1 = 1h

2
+ 1

2c̃
(1(hu)nx +1(hv)ny − (ũnx + ṽny)1h)

α̃2 = 1

c̃
((1(hv)− ṽ1h)nx − (1(hu)− ũ1h)ny)

α̃3 = 1h

2
− 1

2c̃
(1(hu)nx +1(hv)ny − (ũnx + ṽny)1h), (A.6)

in which the Roe average states are

ũ = uR
√

hR+ uL
√

hL√
hR+

√
hL

, ṽ = vR
√

hR+ vL
√

hL√
hR+

√
hL

, c̃ =
√

g(hR+ hL)

2
, (A.7)

and the difference operator is given by

1· = (·)R− (·)L . (A.8)

In two dimensions the subscripts·L and·R represent the interior and exterior edge midpoint
values relative to the cell under consideration.
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